B.TECH

(SEM-III) THEORY EXAMINATION 2019-20 FLUID MECHANICS

Time: 3 Hours
Total Marks: 70
Note1.AttempltS ectiohfsequiaremis sidgtatheahooselitably.
SECTIOAN

1. Attemquturestiontsrief.
$2 \times 7=14$

a.	Distinguish between Kinematic \& Dynamic fluid
b.	State the equilibrium condition for floating bodies
c.	Differentiate between notches \& weirs
d.	Define the phenomenon of water hammer
e.	Give the formula for Drag \& lift force.
f.	Give the formula for Darcy's Weishbach equation
g.	What do you understand by dynamic similarity of models

SECTION B

2. Attempt any three of the following:
$7 \times 3=21$
$\left.\begin{array}{|l|l|}\hline \text { a. } & \begin{array}{l}\text { Derive an expression for the resultant pressure force on a curved surface immersed in a } \\ \text { liquid. Determine the total pressure on a circular plate of diameter } 1.5 \mathrm{~m} \text { which is } \\ \text { placed vertically in water in such a way that centre of plate is } 3 \mathrm{~m} \text { below the free } \\ \text { surface of water }\end{array} \\ \hline \text { b. } & \begin{array}{l}\text { Explain the principle of venturimeter with a neat sketch. Derive for rate of flow } \\ \text { fluid } \\ \text { through }\end{array} \\ \text { it. }\end{array}\right\}$

SECTION C

3. Attempt any one part of the following:
(a) Oil of viscosity 0.1 Pa.s and specific gravity 0.90 , flows through a horizontal pipe of 25 mm diameter. If the pressure drop per meter length of the pipe is 12 KPa , determine (a) the rate of flow in $\mathrm{N} / \mathrm{min}$ (b) the shear stress at the pipe wall (c) the Reynolds number of the flow (d) the power required in Watt per meter length of pipe to maintain the flow. Take' $Y_{w}=9810 \mathrm{~N} / \mathrm{m}^{3}$
(b) For laminar flow of an oil having dynamic viscosity $\mu=1.766$ Pa.s in a 0.3 diameter pipe flows with a maximum central line velocity of $3 \mathrm{~m} / \mathrm{s}$. Calculate shearing stress at the pipe wall and within the fluid 50 mm from the pipe wall
4. Attempt any one part of the following:

(a)	1. Write a short note on:
	i) Distorted and undistorted models
	ii) Merits and applications of model testing
	Similarity laws / Model Laws
(b)	Discuss Dynamic similarities of Models.

\square
5. Attempt any one part of the following:
$7 \times 1=7$
(a) The velocity distribution in boundary layer is given by: $(U / V)=\left(3 / 2 \eta-\eta^{2} / 2\right)$. Find the boundary layer thickness, momentum thickness \& energy thickness .
(b) The velocity distribution in the boundary layer is given by, $\mathrm{u} / \mathrm{U}=1.5 \mathrm{y} / \delta-0.5 \mathrm{y}^{2} / \delta^{2}$. Find (i) Ratio of displacement thickness to boundary layer thickness (ii) Ratio of momentum thickness to boundary layer thickness
6. Attempt any one part of the following:
$7 \times 1=7$

(a)	Justify that velocity potential function \& stream function are orthogonal
(b)	In 2-D incompressible flow, the fluid velocity components are given by $\mathbf{u}=\mathbf{x}-\mathbf{4} \mathbf{y} \boldsymbol{\&} \mathbf{v}=$ $-\mathbf{y - 4 x} . S h o w ~ t h a t ~ v e l o c i t y ~ p o t e n t i a l ~ e x i s t s ~ \& ~ d e t e r m i n e ~ i t s ~ f o r m . ~ F i n d ~ t h e ~ s t r e a m ~$
function also.	

7. Attempt any one part of the following:
$7 \times 1=7$

(a)	$\begin{array}{l}\text { A pipe line of } 0.6 \mathrm{~m} \text { diameter is } 1.5 \mathrm{~km} \text { long. To increase the discharge, another line of } \\ \text { the same discharge is introduced parallel to the first in the second half of the } \\ \text { length.Neglecting the minor losses, Find the increase in the discharge if } 4 \mathrm{f}=0.04 . \text { The } \\ \text { head at inlet is } 300 \mathrm{~mm} .\end{array}$
(b)	$\begin{array}{l}\text { Derive the expression for triangular notch. Also, find the depth of triangular notth } \\ \text { when notch angle is } 60 \text { degree, discharge is } 0.040 \mathrm{~m}^{3} / \mathrm{sec} \& \text { assuming } \mathrm{C}_{\mathrm{d}}=0.6 .\end{array}$

